
Testing Report

Original document from DRTN

Unit Tests
We ran the suite of JUnit unit tests that we inherited with the project. We had a 100% pass
rate for these tests, the evidence of which can be found at
https://teamfractal.github.io/assessment4/reports/tests/. As this is the final stage, it is critical
that these tests passed as the game should be ready for release. These tests were ran
throughout development and on the final codebase.

Requirements Acceptance Tests
We used the methodology we inherited from DRTN for requirements testing. This meant
each of us checked the game against all the requirements and logged whether they had
passed or failed. For this we used the spreadsheet provided by DRTN but updated to reflect
the requirements change. The evidence of this can be found at
https://teamfractal.github.io/assessment4/reqtest4.html. As can be seen, this achieved a
100% pass rate from all members of the team, meaning we can be confident that the
finished product meets the brief.

Manual Tests
DRTN had done extensive manual testing to test those elements of the code which could not
be tested automatically due to a shortcoming in the tests they inherited. We continued with
this methodology and also carried out these tests as they described. We had to change one
of the tests slightly to accommodate the requirements change to allow for up to 4 players.
These tests are listed here, directly copied from the original document linked above (our
changes highlighted in blue).

AIPlayer

Methodology:

These functions were both tested in context (Playing a vs AI game) and tested thoroughly
during development and upon completion in debugging mode. Context can be replicated
simply by having the phase descriptions available to you and playing the game, check
that at every Human turn the AI has clearly made the correct progress for its last turn. So
check it owns another tile and roboticon, check the market has either been bought or
sold from. This is essentially black box testing. The white box tests we ran involved
placing breakpoints on each other functions below, and the case select statement in
RoboticonQuest’s implementPhase. These points provide sufficient information about
the states of the system whilst also making progress between them.

https://github.com/NotKieran/DRTN-Fractal/blob/Assessment3_Docs/Test3.pdf
https://teamfractal.github.io/assessment4/reqtest4.html
https://teamfractal.github.io/assessment4/reports/tests/

Functions & Tests:

Alongside all the individual tests for phases, they are able to correctly implement the
nextPhase button from the UI. Phase 4 is handled automatically so no interaction is
required. Gameflows as expected with the game vs AI.

takeTurn(int phase)

Function is intended to take a parameter between 1 and 5 and execute call the
according phase as expected. It performs as follows:

Integer
Passed

Expected Actual

1 Calls phase1() Calls phase1()

2 Calls phase2() Calls phase2()

3 Calls phase3() Calls phase3()

4 Default // no action Default // no action

5 Calls phase5() Calls phase5()

Other Default // no action Default // no action

random(int max)

Uses the java library Random, this function is merely a convenience and provides
no real contribution to the architecture.

phase1()
Intended to simulate the interaction a player has with phase 1 (Buy a single land
plot). Does not check for money as the AI is started with 20000 money, this is to
compensate for it making less than optimal decisions with buying and selling.
This compensation ensures it makes visible progress every turn and makes the
player feel like they are actually playing against an opponent.

Works exactly as expected both anecdotally and whilst examining a trace table of
all variables and objects. The class will always buy an open land plot, it never buys
more than one land plot. These are selected at random. The selection is also
completely dynamic, in a map with only 4 tiles, it performs identically to a map
with 20 tiles as all variables are taken directly from the plotManager.

phase2()
Intended to simulate player interaction with phase 2 (purchase and upgrade
roboticons). The AI purchases a roboticon and upgrades in accordance with the
first tile it owns which doesn’t have a roboticon. I.e. If it’s first tile without a

roboticon has 10 ORE, 3 ENERGY and 2 FOOD. It will purchase an ORE upgrade for
the corresponding Roboticon. In the event the market is out of roboticons, the AI
will try and purchase one, be caught and head to the next phase. This doesn’t
affect gameplay significantly, however every turn the AI is unable to purchase a
roboticon it will never catch up to each tile having a roboticon as it only buys one
per turn. This situation arises rarely due to the consistent selling to the market
from the AI. And honestly adds to the strategy of the player with denying ORE to
the market.

phase3()
Intended to simulate interaction with phase 3 (Install any roboticons purchased).
The AI will iterate through all its currently owned tiles, if any don’t have a
roboticon, it will then iterate through its roboticons and if any are uninstalled it
will install them on that tile. This works as intended, and due to it sharing the
same iteration as phase 2, it will implement the roboticon previously bought on
the correct tile without having to stored the value of the tile alongside the
roboticon.

phase5()
Intended to simulate interaction with phase 5 (buy and sell from market).
The AI does not gamble as it doesn’t contribute to end score and is also not
immediately visible to the Player. The AI makes a simplistic decision to either buy
or sell resources from the market just to keep it alive and interesting for the
Human player. It either buys 5 of every resource it can, or it sells half of all of its
resources with amounts greater than 1.

It performs exactly as expected in this regard. Reliably alternating between selling
and buying.

The following two functions are utility functions to make phase5 more maintainable
should any changes occur to market or Player classes.

sellResources(ResourceType type, int amount)

Calls Player.sellresourceToMarket and prints what it is doing. Allows for easy
following of process in debugging and maintainability in the future.

buyResources(ResourceType type)

See above description. Has hard coded value of 5, all calls to this function expect 5
of the resource to be purchased.

RoboticonQuest

Methodology:

These tests were specified by Fractal at Assessment 2. However now that we are aware of
the flaw in their testing we decided to test them again to ensure correctness. As with AI

we tested these both in the full context of the game and following all variables and
objects in debugging mode with break points on the functions of interest.

Functions & Tests:

phaseTest()
Check Game starts in correct phase, progresses, and can reset
Breakpoints placed on:

reset(boolean AI)
implementPhase()
nextPhase()

RoboticonQuest performed as expected. Initialising at phase 1 and progressing
correctly upon interaction with the UI. When phase enters 6, a wincheck is
performed to determine if the game should continue. If this fails then phase is set
to 1 and the next player is called to take their turn. As Fractal showed last time, all
phases work correctly when called.

playerTest()

Test game starts at player 0 and increases at appropriate interval
Breakpoints placed on:

implementPhase()
nextPhase()

Monitor the currentPlayerIndex variable in particular

This test was conducted alongside the previously discussed test. Every time phase
6 is reached the currentPlayerIndex is swapped increments and the next player is
able to take their turn. At the end of the final player’s turn, currentPlayerIndex is
reset to 0. We also confirmed the game initialises at currentPlayerIndex = 0.

PlayerEffect

Methodology:

Our work in this assessment led to the introduction of random effects, which were
divided into PlayerEffects and PlotEffects. PlayerEffects are designed to make permanent
changes to players’ resource-counts when imposed, so testing them out involves nothing
more than triggering them and checking whether their encoded changes do indeed make
it through to a player’s inventory.

There are five assertions that need to be made about PlayerEffects to prove that they will
work as intended. These are as follows…

● Imposing an additive effect with a positive parameter for a particular
resource-type will add the value of that parameter to the specified player’s count
of that specific resource-type

● Imposing an additive effect with a negative parameter for a particular
resource-type will subtract the value of that parameter from the specified player’s
count of that specific resource-type

● Imposing a multiplicative effect with a positive parameter for a particular
resource-type will multiply the specified player’s count of that specific
resource-type by the value of the parameter in question

● Imposing a multiplicative effect with a negative parameter for a particular
resource-type will divide the specified player’s count of that specific resource-type
by the inverse of the parameter in question

● Imposing an additive effect that would ultimately take one or more of the
specified player’s resource-counts below 0 will instead leave them with 0 of those
resources

The simplest way of imposing a PlayerEffect on a player is through the impose(Player)
method, which accesses the specified player’s current resource-counts and adds or
multiplies the effect’s internal parameters to/by them. Effects can also be imposed by
configuring their internal Runnable objects to impose them based on specific
preconditions and executing those Runnable objects instead.

PlayerEffect

...

public void impose(Player player) {
 if (multiply) {
 player.setResource(ResourceType.ORE, (int) ((float) player.getOre() *
modifiers[0]));
 player.setResource(ResourceType.ENERGY, (int) ((float) player.getEnergy()
* modifiers[1]));
 player.setResource(ResourceType.FOOD, (int) ((float) player.getFood() *
modifiers[2]));
 player.setMoney((int) ((float) player.getMoney() * modifiers[3]));
 } else {
 player.setResource(ResourceType.ORE, player.getOre() + (int)
modifiers[0]);
 player.setResource(ResourceType.ENERGY, player.getEnergy() + (int)
modifiers[1]);
 player.setResource(ResourceType.FOOD, player.getFood() + (int)
modifiers[2]);
 player.setMoney(player.getMoney() + (int) modifiers[3]);
 }
}

...

Hence, the method that we followed to test the assertions stated above is as follows…

● Place a breakpoint at the end of the impose() method shown above (to the side of
the bracket highlighted in red)

● Temporarily change the local effectChance variable in the RoboticonQuest class’
setupEffects() method to 1 (to ensure that all effects added to the
PlayerEffectSource class’ internal array are always imposed)

RoboticonQuest

...

private void setupEffects() {
 //Initialise the fractional chance of any given effect being applied at the
start of a round
 effectChance = (float) 1;

...

● Remove the restriction in the implementPhase() method preventing the

setEffects() method from being run if the local turnCounter variable was below 3
(to allow for effects to be imposed as soon as the game starts)

RoboticonQuest

...

case 1:
 ...

 if (turnNumber > 0) {
 clearEffects();
 setEffects();
 }
 //Only consider imposing effects once each player has claimed at least 1 tile

...

● Change the values of the global money, ore, energy and food variables declared in

the Player class to 50

Player

public class Player {
 ...

 private int money = 50;
 private int ore = 50;
 private int energy = 50;
 private int food = 50;

 ...

● Create four temporary effects in the PlayerEffectSource class as follows...

PlayerEffectSource

public PlayerEffect test1;
public PlayerEffect test2;
public PlayerEffect test3;
public PlayerEffect test4;

...

private void configureEffects() {

 ...

 test1 = new PlayerEffect("Test 1", "Test 1", 10, 10, 10, 10, false, new
Runnable() {
 @Override
 public void run() {
 test1.impose(game.getPlayer());
 }
 });

 test2 = new PlayerEffect("Test 2", "Test 2", -10, -10, -10, -10, false, new
Runnable() {
 @Override
 public void run() {
 test2.impose(game.getPlayer());
 }
 });

 test3 = new PlayerEffect("Test 3", "Test 3", 2, 2, 2, 2, true, new Runnable()
{
 @Override
 public void run() {
 test3.impose(game.getPlayer());
 }
 });

 test4 = new PlayerEffect("Test 4", "Test 4", (float) 0.5, (float) 0.5, (float)
0.5, (float) 0.5, true, new Runnable() {
 @Override
 public void run() {
 test4.impose(game.getPlayer());
 }
 });
}

● Change the implementPhase() method in the PlayerEffectSource class to make it

add the test1 effect (and nothing else) to the internal array

PlayerEffectSource

 ...

 private void implementEffects() {
 add(test1);
 }

 ...

● Run the game and check that the following variables bear these values at the
breakpoint

○ Test 1: [Effect: test1] [Player: player {money = 60 | ore = 60 | energy = 60 | food
= 60}]

● Then, do the same for the other three tests, and check that the same variables
appear like so at the breakpoint

○ Test 2: [Effect: test2] [Player: player {[Money = 40 | Ore = 40 | Energy = 40 |
Food = 40}]

○ Test 3: [Effect: test3] [Player: player {Money = 100 | Ore = 100 | Energy = 100 |
Food = 100}]

○ Test 4: [Effect: test4] [Player: player {Money = 25 | Ore = 25 | Energy = 25 | Food
= 25}]

● Now, open the Player class again and change the values of the global money, ore,
energy and food to 0

Player

public class Player {
 ...

 private int money = 0;
 private int ore = 0;
 private int energy = 0;
 private int food = 0;

 ...

● Run test2 again in much the same way that you did before and check that the

current player owns the following amounts of resources at the breakpoint
○ Test 5: [Effect: test2] [Player: player {Money = 0 | Ore = 0 | Energy = 0 | Food =

0}]
(This final test is done to ensure that effects do not withdraw more than what
players can afford to give)

Test Results:

Test 1: Pass [Player: player {money = 60 | ore = 60 | energy = 60 | food = 60}]
Test 2: Pass [Player: player {money = 40 | ore = 40 | energy = 40 | food = 40}]
Test 3: Pass [Player: player {money = 100 | ore = 100 | energy = 100 | food = 100}]
Test 4: Pass [Player: player {money = 25 | ore = 25 | energy = 25 | food = 25}]
Test 5: Pass [Player: player {money = 0 | ore = 0 | energy = 0 | food = 0}]

Plot Effects

Methodology:

Plot effects work specifically by altering the production modifiers of land plots. Therefore
to manually test the effects, we would have to make sure that the correct amount of
resources are produced by a land plot based on the effect that has been applied to them.

The following assertion are to be made about plot effects to prove that they work

● For every land plot that an effect is imposed on,:
○ If the plot effect modifier adds/subtracts to the original modifiers, the new

modifiers must equal the old modifiers with the effect imposed modifiers
added/subtracted to it.

○ If the plot effect modifier multiplies to the original modifiers, the new
modifiers must equal the product of old modifiers and the effect imposed
modifiers.

○ If the plot effect modifier replaces the original modifiers, the new modifiers
must equal the effect imposed modifiers.

○ Once an effect is reversed, the tile’s modifiers should be the same as they
were before the effect was applied

Like player effects, plot effects are invoked via the impose(LandPlot, Mode) function.
LandPlot is the plot that is being affected and the Mode is the type of change being
applied to the modifiers as described in the comments of the following code.

Just like the test for the player effects above, the code shall be changed so that effects
have a 100% chance of triggering each turn. However, they’ll be triggered in the player’s
second turn. This is because we want to record a tiles resource production before an
effect is triggered, so it can be compared to the resource production of a tile after an
effect is applied to it. This can be achieved by the following method:

● Acquire a random tile
● Buy a roboticon
● Choose a customisation for the roboticon that produces the resource that the

effect affects
● Record the amount of resources that have been produced
● Apply an effect
● Assert that the amount of resources produced is correct
● On the next turn, make sure that the amount of resources produced are the same

as they were before the effect was applied to ensure that the effects have been
reversed

This will be tested with the following 3 test effects

Results

Test Production before
effect is applied

Production during
effect

Production after
effect has been
reverted

test1 Ore = 2, Energy = 3,
Food = 5

Ore = 12, Energy = 13,
Food = 15

Ore = 2, Energy = 3,
Food = 5

test2 Ore = 7, Energy = 2,
Food = 4

Ore = 14, Energy = 4,
Food = 8

Ore = 7, Energy = 2,
Food = 4

test3 Ore = 3, Energy = 1,
Food = 5

Ore = 5, Energy = 5,
Food = 5

Ore = 3, Energy = 1,
Food = 5

As you can see, all test passed successfully.

GUI Tests
DRTN quoted the testing report they inherited as follows:
“To ensure that the GUI behaved correctly and as expected, we created a list of test
scenarios that describe actions that the player should be able to complete, how the GUI
should behave when they are completed, and how it should behave when they are unable
to be completed. We have so far only written tests for those features that we have
implemented at this stage, as the GUI behaviour for unimplemented features is not yet
fully defined. The full plan and results of these tests can be found at
http://teamfractal.github.io/assessment2/GUITesting.pdf

All of these tests pass, so we are confident that our GUI, as implemented so far, behaves
as expected. We believe this tests are complete because they cover all aspects of the GUI.
We believe these tests give us the correct results because we ran them several times as
we were developing the code.” -Team Fractal @ Assessment 2

These tests are listed below, with DRTN’s additions in green as in their report, and our new
additions in blue.

These tests had a 100% pass rate.

Capture the Chancellor

ID Test Pass/Fail

36 After market overlay is
closed “Capture the
Chancellor” overlay is
displayed or not at random

Pass

37 On clicking “Run away” the
overlay should close and
the game should be on
phase 1

Pass

38 On clicking “Fight” the
game should present 3
buttons: “Water gun”, “flare
blitz” and “leafage”

Pass

39 On clicking one of the fight
options or “Master Ball”,
information about the
success or failure should
be displayed in the bottom
left hand corner

Pass

http://teamfractal.github.io/assessment2/GUITesting.pdf

Player Selection

ID Test Pass/Fail

40 After the splash screen the
player should be able to
select the amount of
players and AI players

Pass

Start screen:

ID Test Pass/Fail

1 If the player clicks on the
start game button, the
game moves to phase 1 of
player 1’s turn

Pass

2 If the player clicks on the
exit button, the game quits

Pass

Buying a plot:

ID Test Pass/Fail

3 If the player clicks on an
unbought plot the buy plot
button appears

Pass

4 If the player then clicks
somewhere else the buy
plot button disappears

Pass

5 If the player clicks on the
buy plot button and has
sufficient gold, the plot will
gain a coloured border
(blue for player 1, red for
player 2)

Pass

6 If the player clicks on a tile
that has already been
bought, or cannot buy a tile
due to already having
bought one that turn, or not
having enough money, the
buy plot button appears
greyed out

Pass

7 If the player clicks on the
next button, the game
moves to the roboticon
market screen

Pass

Roboticon market:

ID Test Pass/Fail

8 The player can increase and
decrease the number of
roboticons to buy with the
left and right buttons

Pass

9 The player can buy the
specified number (provided
they have enough money
and the market has not run
out) buy clicking on the buy
roboticons button

Pass

10 When the player clicks on
the buy roboticons button,
the specified number
appears in the list on the
right hand side

Pass

11 The player can scroll
through their roboticons
using the left and right
buttons

Pass

12 The player can pick a
customisation from the list
and can buy it, the
customisation then
appears on the roboticon in
view

Pass

13 If the player clicks on the
next button, the game
moves to the install
roboticon screen

Pass

14 If the player does not click
next before they have spent
30 seconds on this screen,
the game automatically
moves to the install
roboticon screen

Pass

Roboticon installation:

ID Test Pass/Fail

15 If the player clicks on a tile
they own which does not
already have a roboticon,
the install roboticon menu
appears

Pass

16 The player can pick one of
their uninstalled
roboticons and click to
install it on that plot

Pass

17 The player can click cancel
on the install roboticon
menu to close the menu

Pass

18 When the player installs a
roboticon the image of the
relevant roboticon appears
on the plot tile in question

Pass

19 If the player clicks on the
next button, the game
moves to the resource
production phase

Pass

20 If the player does not click
next before they have spent
30 seconds on this screen,
the game automatically
moves to the resource
generation screen

Pass

Resource production:

ID Test Pass/Fail

21 On this screen the resource
amounts generated appear
in the bottom left hand
corner

Pass

22 The resource amounts are
added to the totals in the
top left corner

Pass

23 If the player clicks the next
button, the game moves to
the resource market screen

Pass

24 If the resource production
finishes before the the
player clicks next, the game
automatically moves to the
resource market screen

Pass

Resource Market:

ID Test Pass/Fail

25 The player can use the left
and right buttons to
increase and decrease the
amounts of resources to
buy or sell

Pass

26 If the player clicks the buy
button for a transaction,
the relevant amount of gold
is and resource is
removed/added to the
player’s totals in the top
left corner

Pass

27 The player cannot buy or
sell more resources than
the market or they have, or
they have money for

Pass

28 If the player clicks the next
button the game moves on
to the plot buying screen,
and switches to the other
player

Pass

Gambling screen

ID Test Pass/Fail

29 Input field allows to type in
the amount of money for
gambling

Pass

30 After hitting “Gamble
Money” player’s and AI’s
dice values are displayed

Pass

31 After hitting “Gamble
Money” player’s money
updates according to
gambling outcomes

Pass

32 “Money Won” and “Money
Lost” fields updates
according to gambling
outcomes

Pass

33 “W/L” field shows number
of win and loss and
updates during the
gambling

Pass

Effect being imposed

ID Test Pass/Fail

34 PlayerEffect occurs.
PlayerEffect is clearly
visible when imposed. It is
clear what has happened

Pass

both in exposition and
game terms.

35 PlotEffect occurs.
PlotEffect is clearly visible
when imposed. It is clear
what has happened both in
exposition and game
terms.

Pass

