
Architecture
For this Assessment we built the architecture diagram using the IntelliJ built in diagram
functionality. Whilst we planned the new architecture on paper it was far easier generate a
diagram from the code than try to reorganise our current diagram, which is very large, on
lucidchart. Our Final architecture is available at
https://teamfractal.github.io/assessment4/diagram.png.

For assessment 4 we introduced a number of changes to the architecture, including adding a
number of classes.

We created the PlayerSelectScreen class and the PlayerSelectActors class, this
allowed us to build a screen on which a player can choose the number of players they want
to play with. We separate the screen from the actors to allow us to keep the logic of the
buttons in one class and then focus on where they sit on the screen in another.

The PlayerSelectScreen and actors class communicate to allow us to place buttons and
labels on the screen. The screen is initialised when the player presses the new game button
on the main menu screen and is stored in the RoboticonQuest engine class, along with
the other screens. When the player confirms their player selection the game engine will be
called to enter the main game.

To implement the Capture the Chancellor mode, we took advantage of the gson module to
transform JSON configurations into our predefined class, CaptureData. The advantage of
separating the code and the data is to enable a flexible way, to modify the game’s
behaviours based on the pre-defined data input, any maintainer can adjust values
accordingly without the need to figure out where the data is embedded inside the large code
base.

We have 3 animation classes

● TypeAnimation - to display text
● WhiteStrip - to show the white stripes on screen
● WildChancellorAppear - use to show the chancellor and show him being captured

TypeAnimation and WhiteStrip both communicate with the WildChancellorAppear to send the
details of the part of the animation that they deal with to the animation where it will be displayed.
All three classes extend the AbstarctAnimation Class and implement the IAnimation class
allowing us to easily build an animation with prebuilt classes.

During gameplay the engine handles the capture the chancellor game. After installation of
roboticons the engine will generate a new instance of WildChancellorAppear which handles the
rest of the minigame by generating the other animation classes and data classes. This means
the engine is not too involved in the minigame and allows us to separate it from the rest of the
game.

https://teamfractal.github.io/assessment4/diagram.png

We also changed how the screens were generated. When we inherited the code the main game
screen was created by the main menu screen, however by inserting the new screen to choose
the number of players this no longer worked. We instead moved the screens to the engine as
attributes. This is a far better system because it places all of the screens in one place and allows
any class that knows about the engine to manipulate the screens.

Traceability
To ensure traceability, we focused on bringing forward the ideas about the game during the
initial formation of requirements to the whole project, all the way through to the
implementation.

The main way in which we did this was by presenting our requirements as a series of
testable features. This meant that when we had implemented the game we could easily go
back to our initial requirement documentation and go through each one of our requirements
tests. If any of these tests did not pass we would know what we still had to implement.

We also used the git version control system, this allows us to easily to locate the history of
our product. From this history we can get an idea of how the game progressed, we can see
the order in which classes were made and how the relationships between classes has
developed and evolved. This has been useful as it has allowed us to understand the
relationships between classes, and made the processes of modifying the architecture a lot
easier.

