

During Assessment 3 there were a few large features that needed to be implemented, these
were:

● An AI Player (Requirement 4.1.1)
● An option to chose the number of players (AI or human) (Requirement 4.1.1)
● The minigame (Requirement 9.1.1)
● Trading with other Players (Requirement 8.1)
● Random events (11.1.1)

To implement the AI Player we extended the normal player class, this is useful as it allows
us to store all Players in one Array in the Game Engine, this makes things like choosing
who’s turn it is much easier as you merely have to iterate through an Array. Inheriting the
constructor from the Player is also useful as it needs to store the same information i.e. the
resources and money the player has. On top of that the AI has been given methods to chose
what to do in a given round. Unlike a human player the AI does not need to interact with the
GUI so it can just directly call methods in the market and the engine to trade and claim plots.

Choosing a number of Players required a number of changes to the way the Engine stored
and treated players. Instead of a fixed set of Players being generated and Colleges being
assigned directly to them, a fixed list of all colleges is generated, then an list of players is
generated, the size of which is dependant on the amount of players selected. The players
are then assigned to a college in the college list. The list of players stores bot AI and regular
players for the convenience of moving between them in the game. A new screen was
implemented to allow the user to easily select the number of players. The user is taken to
the screen before the game begins so they cannot accidentally start a game without
selecting the number of players. However, this screen needed access to the engine to tell it
how many players were in the game and originally the engine was not initialised until the
GameScreen was created. The GameEngine and the GameScreen were also both
dependant upon each other to initialise. Because of this the initialisation of the engine and
the GameScreen had to be moved to inside the player selection screen and a new method
to assign an engine to the GameScreen was created.

When implementing the minigame we decided to keep it simplistic, this was so we could
spend more time implementing the core elements of the game. We elected to make simple
card flipping game where you spend money and then choose one of three face down cards.
When a card is flipped your reward (or loss) is revealed. The game is easy to play and will
not distract the player from the overall game. If there is not enough money to pay for the
game’s fee then the player cannot enter the mini game.

For trading with other Players our original Architecture had an auction class which would
take offers and get prices from various players, choosing the best price. However, in a
turn-based game and a game that might not have many players we decided that this would
not work very well. Instead a Players can directly send offers of resources for a set price
directly to a player of their choice. This is much better in a turn based game as it only takes
one turn for them to either accept or decline the offer. To implement this system a new Trade
class was implemented, the class contains the amount of resources on offer and the price
they are being sold for. The Trade can also reference who the trade is to and who it is from.

Trades also contain an execute method, which upon confirmation from the receiver will move
the resources and money around. Trades are created in the market and then stored in an
Array in the Engine. Since they are in the Engine it is very easy to check if the current player
has any pending trades at the beginning of a new phase, as you just need to iterate through
the array and check if any of the trades are aimed at the current player. When the trade is
either accepted or declined it is removed from the Array in the engine so it does not appear
again.

To create the random events which occur every round in the game, we decided to create an
abstract class called RandomEvent. We did this because there are many methods which are
required to be implemented across random events, and methods which behave in exactly
the same way across all random events and can therefore be shared via inheritance. By
doing this, it gave us an easy way to create new kinds of random events, without having to
reconfigure lots of code across many files in the project. In the sub-classes Earthquake and
Malfunction, the back-end effects are described, along with the messages which are passed
to the designated random event overlay in the GUI. To prevent the same type of random
events from occurring too frequently, a cooldown system was implemented which meant that
after an event occurred, a new event of the same type could not occur for x turns. The
random events are stored in an ArrayList in the GameEngine class.

There were also other smaller additions implemented:

Resources needed to affect the rate of production (Requirement 7.1.4)
When a tile produces resources it consumes food and energy, if the player does not have
enough food or energy resources are not produced

The Market needs ore to generate Resources (Requirement 6.1.2)
A method has been implemented so that the market will test the amount of ore it has and
generate new roboticons based on that.

Changes

Class Change Side effects Justification

Engine Store players
in a list which
is initialised
with a size
selected by
the user.

Next player
class had to be
refactored to
iterate through
a list that does
not have a set
size.

Allowed us to vary the amount of
players in the game and chose to
have an adjustable number of AI
players.

Engine Store colleges
in a list in the
engine class.

- Assigning players to a college is
much easier if they are stored in a
list as you only need an index.

Engine Refactored - Made the code easier to read,

nextPhase()
method into a
switch
statement and
moved parts
of it into their
own methods.

maintain and update.

Engine Changed the
nextPlayer()
method to
iterate through
the player list
and deal with
AiPlayers.

More complex
code.

The game can now deal with more
than 2 Players and also allows the
player to play against an AI player.
(Requirement 4.1.1).

Drawer Added the
ability to draw
a roboticon on
a tile.

- Gives the player feedback after
installing a roboticon.

GameScreen No longer
initialise
engine in
GameScreen,
but assign it
after it is
made.

- The engine is needed in the
PlayerSelectScreen before the
GameScreen is initialised.

Market Put the
auction in the
market space
and added
buttons to
move between
them.

- Allows us to keep all trading
related elements in one place on
screen. Whilst separating player
and market trading by preventing
them from appearing at the same
time to avoid confusion.

AbstructAnimatio
n, IAnimation,
IAnimationFinish

Code from
previous
assessment,
add animation
interface for
game.

- Allowed us to continue use the
familiar animation code.

AnimationTileFla
sh,
AnimationPlayer
Win

Add new
animations.

- A few animations for the game, to
make it more [...]

Player Show player
number
method.

- The old method use the player
number as ID and the index for
reference, which increases the
unnecessary memory usage. Now
the player ID is zero based and
the new player number method
return the value of ID + 1.

MiniGameScreen Added the
mini game
screen and
integrated to
the game
engine

- This is for player to gamble, it cost
20 per game. It may get +100
money or +1 roboticon or get
nothing. The price will transfer to
the player immediately. If player
do not have enough money then
they cannot enter the game.

AiPlayer Added
AiPlayer
extends
current Player
class.

 Its process phase method is called
automatically on phase end, to
make human player play with ai
player.

As the Game passed all requirement testing, we are confident that all features required for
assessment 3 have been fully implemented.

We have provided a page showing all the changes we made to the code in detail at
https://teamfractal.github.io/assessment3/diff.html (this was generated using the pretty-diff
tool (found at https://github.com/brendanblackwood/pretty-diff))

https://teamfractal.github.io/assessment3/diff.html
https://github.com/brendanblackwood/pretty-diff

