
SECTION 1. REQUIREMENTS Team Fractal

Section 1

Requirements

Additions: Green
Deletions: Red

1.1 Background

1.1.1 Elicitation and Negotiation

Requirements are fundamental to the software engineering process. In order for us to deliver a piece
of software which is as close to our customers vision as possible, we needed to begin the requirement
engineering process, starting with elicitation. We first analysed the brief as a team, and made a note of all
the requirements which were clearly stated. We also highlighted parts of the brief which we thought were
ambiguous and needed further input from the customer to ascertain what they required more precisely.
We took these points and made a list of questions which we took to an interview with the customer to
gain further insight into what they required. At the interview, the customer told us that we could decide
what we thought was best for some of the details, such as the exact features of the map, and the amount
of customisation that can be applied to a plot. He also cleared up certain ambiguities in the brief such
as how resources are generated. Some negotiation took place over certain features. We looked at all of
these as a team and decided on an initial plan of what these should be.

We took this information and created user stories to represent how a user would interact with the
game. From there pulled out a series of functional and non-functional requirements that would allow
those user stories to become a reality.

We compiled all of this into the first draft of our requirements, with a section for those things which
would be nice to have, but were not essential according to the brief. This means that if we need to revisit
our requirements during development because otherwise we would not be able to complete the project
on time, we know which requirements can be changed or toned down to allow for this.

We took this first draft of the requirements back to the customer, and together we went through
them all to ensure that we were agreed on what the requirements were.

1.1.2 Presentation

We will be using user stories, as detailed in Sommerville [1], these stories will detail the needs of the
user for specific features and aspects of the system. We are using user stories as they are part of the
agile development process and easily allow for us to iteratively adapt to change. This is useful the
requirements themselves change or if we realise we need to update them due to contradictions. The user
stories will also include acceptability criteria, this means that we will be easily laid out everything the
system needs to be able to do. This will also feed into the test driven development we will be using later
in the project as we able to see if a requirement has been fully implemented. We will not be using use
cases as they are part of none agile development methods and more suited to transactional processes and
are therefore inappropriate for this project.

We will then tabulate our requirements to make them more accessible to us and to the customer.
In the table we will have the number and name of the user story to allow us to easily reference them.
We will then have the user story itself. Finally, we will have the acceptance criteria split up into
functional and non-functional requirements. When referencing requirements they will be referred to by

2

SECTION 1. REQUIREMENTS Team Fractal

a series of 3 numbers separated by points. The first number will represent the position of the user story
associated with the requirement in the requirements table. The next number will show if the requirement
is functional, represented by a 1, or non-functional, represented by a 2. The final number will represent
the position of the requirement in its cell in the table. We chose to tabulate our requirements after
initially presenting our requirements to the customer as a user story followed by a list but changed them
as he said it would be easier for both himself and us to read and reference.

3

S
E
C
T
IO

N
1.

R
E
Q
U
IR

E
M
E
N
T
S

T
eam

F
ractal

1.2 User Stories

Title Story Functional Non-functional
1 GUI As a player I must be able

to see a GUI consisting
of a map subdivided into
plots and should be able
to gain information about
the state of my freehold
and my individual plots.

1.1.1. The entire map should be available to the user

1.1.2. Information about individual plots should be
shown:

(a) Which player owns a plot

(b) Output of ore, energy, and food

(c) Robiticons installed

1.1.3. The total amount of resources a user has must
be shown on the GUI

1.2.1. The map must represent the university
of York with at least 3 identifiable land-
marks

1.2.2. The map must be split into multiple
evenly sized plots

1.2.3. Each player must be uniquely identifi-
able on the map

1.2.4. The GUI should load in less than 5 sec-
onds

2 Purchasing Land As a player I must be able
to purchase plots of land
to increase the size and
productivity of my free-
hold

2.1.1. The player must be able to exchange currency
for more land during the acquisition phase of
the round

2.2.1. Plots will have di↵erent strengths and
weaknesses in terms of production based
on location and terrain type

2.2.2. The player must be able to cancel a pur-
chase to avoid accidental purchases

3 Plot Modification As a player, I must be
able to buy and sell var-
ious modifications to my
plots to increase produc-
tivity and/or style.

3.1.1. The system must provide a number of possible
modifications to plots

3.2.1. The player must be able to view all mod-
ifications and choose one to install

3.2.2. Installation must take less than a second

4

S
E
C
T
IO

N
1.

R
E
Q
U
IR

E
M
E
N
T
S

T
eam

F
ractal

Title Story Functional Non-functional
4 Multiplayer As a player, I must be

able to buy and sell var-
ious modifications to my
plots to increase produc-
tivity and/or style.

4.1.1. A player must be able to chose whether to play
against another human or the computer

4.1.2. At least two users must be able to play the
game together

4.1.3. The players will take turns in playing

4.2.1. The simulated player should take no
longer than 20 seconds to complete a
round

5 Round Structure As a player I must be
able to play the game in
a structured manner 5.1.1. The game must be split into multiple rounds

5.1.2. Each round should be made of 5 phases:

1. Purchase any unoccupied plots

2. Purchase and customise roboticons

3. Install roboticons on plots of land

4. The colony produces resources

5. The player can buy and sell resources

5.1.3. Phases 2 & 3 must be time limited.

5.2.1. It must be easy for the player to move
between phases

5.2.2. Changes between phases must take no
longer than 5 seconds

6 Roboticons As a player I must be able
to purchase and customise
my roboticons so they can
produce more of certain
amounts of resources

6.1.1. The player must be able to purchase roboticons
from the market

6.1.2. The market must have ore to produce roboti-
cons

6.1.3. The user must be able to purchase modifica-
tions for the robiticon at the market

6.1.4. The user must be able to install modifications
on roboticons

6.1.5. The user must have the option to install a
roboticon on a plot of land they own.

6.2.1. At the start of the game, the market has
12 roboticons

5

S
E
C
T
IO

N
1.

R
E
Q
U
IR

E
M
E
N
T
S

T
eam

F
ractal

Title Story Functional Non-functional
7 Resources As a player I must be able

to produce resources from
my plots 7.1.1. Roboticons are required to produce resources

7.1.2. During phase 4 the users roboticons will gen-
erate resources across the freehold

7.1.3. Food, energy and ore will be generated

7.1.4. Di↵erent amount of resources will a↵ect the
rate of production

7.2.1. The resource production should not take
more than 5 seconds

7.2.2. The resource production should happen
automatically

8 Buying/selling resources As a player, I must be able
to buy and sell resources
to other players through
an auction, or to the mar-
ket at a fixed price so that
I can maximise my wealth
and productivity.

8.1.1. The system must provide an auction facility,
where the other player and the market bid for
resources

8.1.2. The system must choose a market price based
on resource abundance

8.1.3. The player must be able to buy/sell resources
from/to other players, or the market

8.2.1. At the start of the game, the market
must have 16 units of food and energy
and 0 units of ore

8.2.2. At the start of the game, the player must
have a small amount of money

9 Gambling As a player, I must be able
to enter the bar and either
win or lose money. 9.1.1. The system must provide a minigame where

the player can gamble with their money
9.2.1. The minigame must give feedback on the

money won or lost

10 Winning As a player, I must be able
to win or lose the game.

10.1.1. The system must assign a value to each re-
source at the end of the game, from which a
player’s final wealth is calculated

10.1.2. The game must end on the round in which the
last plot of land has been allocated.

10.1.3. The player with the highest final wealth must
be declared the winner, and Vice-Chancellor of
the colony

6

S
E
C
T
IO

N
1.

R
E
Q
U
IR

E
M
E
N
T
S

T
eam

F
ractal

The main risks associated with these requirements are risks 3, 4, 5 & 6 as certain requirements may not be able to be implemented due to available tools or sta↵
ability, however risks 8 and 11 must also be considered as they may change the requirements themselves.

7

BIBLIOGRAPHY Team Fractal

Bibliography

[1] I. Sommerville, Software Engineering. Harlow, United Kingdom: Pearson Education, 10 ed., 2016.

8

