
SECTION 3. METHOD SELECTION AND PLANNING Team Fractal

Section 3

Method Selection and Planning

3.1 Outline and Justification of Software Engineering Methods
and Tools

Choosing a set of software engineering methods for our SEPR project has required careful consideration
from us as a team. Many factors can influence the suitability of certain methods for a project, such as
team size, the type of system being delivered and the volatility of user requirements. It was through the
analysis of these type of factors that we came to a decision about which methods we would be using.

A key aspect of a software engineering method is its development lifecycle, which dictates and char-
acterises each engineering activity. Many di↵erent lifecycles exist, with varying characteristics, so it was
important for us to explore some di↵erent types and decide which one was best for our project. We
decided that methods based on an incremental development lifecycle would be most suited to us, as it
protects us against volatile requirements and allows us to regularly get feedback from our customer. This
means we can produce an end result which is as close to our customers expectations as possible. We
explored alternative lifecycles to the incremental approach, including the waterfall approach proposed
by Winston Royce [1]. We discarded this approach however because the model struggles to deal with
changes of requirements, and also has large documentation overheads which are not necessary for the
size of our project. There is also risk involved with this model as the first time the customer sees the
software is at the end of the lifecycle, so if they are not satisfied then it will be very hard to fix broken
procedures and implement new ones.

Now that we had decided on our development lifecycle, we next had to decide on a set of engineering
methods and principles which fit the incremental approach. Once again, there are a large number of
methods which fit this approach so an investigation of these methods and their di↵erences was required.

We looked at the Rational Unified Process (RUP) proposed by Rational, now a division of IBM,
which is a plan-based incremental engineering method. RUP splits each iteration of the development
lifecycle into four phases, called the inception phase, elaboration phase, construction phase and transition
phase. Each phase has a well defined milestone which is achieved at the end of the phase [2]. The
first two phases involve the creation of a requirements list, use cases, risk assessments, project plans,
a system architecture amongst other planning phase documents. The next two phases are all about
the development, testing and integration of the system into the customers working environment. After
evaluation and consideration, we decided that RUP wouldnt be best suited to our project. The problem
we found was that in order to use this development process, you need strong knowledge from the outset
of how the system will work in order to develop the use cases. While we have been given a brief, from
interviewing our customer we discovered that certain features have been left up to us to develop, meaning
that working through the first two phases of RUP in each lifecycle would be di�cult and cost us time,
leaving us with less time to actually develop the software. Also, according to Boehm, only change rates
on the order of 1% of the requirements are acceptable for plan-based development [3, p 31]. With our
project, requirements may change on a regular basis, meaning that this approach may not be able to
cope.

We decided instead to adopt an Agile approach to the software engineering of this project due to its
merging of design and implementation phases and short iteration lifecycles which will allow the system
to organically grow as we incorporate customer feedback into the development process. We will mainly
be following the eXtreme Programming (XP) and Scrum agile methods, as the principles in each method

12



SECTION 3. METHOD SELECTION AND PLANNING Team Fractal

work very well for small teams who can stay in regular contact with their customer, which is perfect for
us. Some of the principles from the eXtreme Programming agile method that we will be using in the
development of our project are:

• Test Driven Development (TDD)

• Refactoring

• Incremental Planning & User Stories

• Pair Programming

• Small releases & updates of the final product [4]

In order to write code and collaborate as a team, we are going to need a version control system.
Git seems like a suitable option, as it allows us to work on di↵erent sections of code together in local
repositories before committing updates to the main repository without blocking each other’s productivity.
A good team also requires good communication, so we will be using the Slack service as it allows us
to talk on multiple channels, and integrate other services into conversations (e.g. Git commits and
updates). Organising tasks which need to be completed is another important part of collaboration, and
Trello provides a very nice way of doing this. We can set up di↵erent cards on a Trello dashboard for
di↵erent backlogs of task, meaning that we always know what needs to be completed, what is being
completed and what has been completed.

3.2 Team Organisation

Team organisation can be the di↵erence between a successful project and a failure, so we took the time
to choose an approach to organisation which will allow the team to collaborate e↵ectively, and reflect on
improvements we need to make as a team in order to be successful. The Scrum methodology seems like
an excellent way to organise the team, and fits in well with the other Agile methods and principles we
are using e.g. user stories from eXtreme Programming [4].

We will begin each iteration of our software lifecycle by reviewing our current user stories and breaking
them down into tasks which can then be implemented into the system. Test cases can also be generated
from these stories for Test Driven Development. We will have a Trello dashboard with cards for the
Product Backlog and the Sprint Backlog where all the tasks and the current sprint tasks respectively
will be stored, allowing us to move tasks from the left to the right as they are completed by the team.
Once the tasks we are completing during the sprint have been established, we will carry out the sprint
which will last for around 4 - 5 days. During this time we will attempt to implement as many of the
tasks in the Sprint Backlog as we can, as well as having a regular meeting each day called a Scrum where
we say what we are working on, how we are getting on with it, and if we are having any issues. After the
sprint is finished, we should ideally have a version of our system that is working and includes all of the
functionality we have implemented so far. We will then have a sprint review, where we discuss how the
sprint went, if there is any outstanding functionality which wasn’t implemented during the sprint and if
there are any ways in which we can improve team productivity.

13



S
E
C
T
IO

N
3.

M
E
T
H
O
D

S
E
L
E
C
T
IO

N
A
N
D

P
L
A
N
N
IN

G
T
eam

F
ractal

3.3 Project Plan

Task Name Priority
First Term Christmas Holiday Exams Second Term Easter Holiday Third Term

7/2 8/1 8/2 9/1 9/2 10/1 10/2 H1/1 H1/2 H2/1 H2/2 H3/1 H3/2 H4/1 H4/2 H5/1 H5/2 1/1 1/2 2/1 2/2 3/1 3/2 4/1 4/2 5/1 5/2 6/1 6/2 7/1 7/2 8/1 8/2 9/1 9/2 10/1 10/2 H1/1 H1/2 H2/1 H2/1 H3/1 H3/2 H4/1 H4/2 1/1 1/2 2/1 2/2 3/1
Assessment 2 Assessment 2
Website Low
- Link Assessment 1 & 2 Deliverables
- Link Game Executable
- Link Executable Test Plan & Test Results
- Link User Manual
Architecture Report High
- Create Concrete Architecture Diagram showing code structure
- Write justification of architecture & changes made from the abstract version
Implementation High
- Provide the documented code for the program
- - Write the program code
- - Document the program code
- Name any features we were unable to implement
GUI Report Medium
- Summarise and justify the GUI design
- Provide URLs to any relevant pages
Software Testing Report High
- Summarise testing methods and justify their suitability
- Create test report, detailing what tests were run, what results were achieved
- Provide URL to testing material
Requirements Update Medium
Method and Plan Update Medium
Risk Assessment Update Medium

Assessment 3 Assessment 3
Website Low
- Upload Deliverables
- Upload User Manual
Change Report High
- Summarise approach to change
- Explain and justify changes made
Implementation and Report Medium
- Create documented code
- Write report explaining and justifying code

Assessment 4 Assessment 4
Final Architecture and Traceability report High
- Explantion and justifcation of final architecture
- How assessment 4 changes were accommodated
Evaluation and Testing report Medium
- Explain and justify testing
- Comment changes in testing since assesment 3
- Comment on how the product does/doesn't meet requirements
Implementation Medium
- Write documented code
- Summarize changes made to code
Project Review Report Low
- Comment your team’s management, approaches, methods and tools

Arrows show the dependancies between tasks.
The critical path is shown in red (this diverges because writing the code and testing will be happen concurrently).

14



BIBLIOGRAPHY Team Fractal

Bibliography

[1] W. W. Royce, “Managing the development of large software systems,” in proceedings of IEEE
WESCON, vol. 26, pp. 328–338, Los Angeles, 1970.

[2] Rational, IBM, “Rational unified process: Best practices for software development teams.”
[online] Available: https://www.ibm.com/developerworks/rational/library/content/03July/

1000/1251/1251_bestpractices_TP026B.pdf, 1998. [Accessed: Oct 23, 2016].

[3] B. Boehm and R. Turner, Balancing agility and discipline: A guide for the perplexed. Boston, MA,
USA: Addison-Wesley Professional, 2003.

[4] I. Sommerville, Software Engineering. Harlow, United Kingdom: Pearson Education, 10 ed., 2016.

15


