
SECTION 2. ARCHITECTURE Team Fractal

Section 2

Architecture

2.1 Proposed Architecture

2.1.1 Introduction

In this project we will be designing the architecture for our game, and its achieved by using lucidchart
for UML diagram drawing. The reason for choosing this tool, simply because it have those necessary
symbols already predefined, it also gives us the ability to work on diagrams collaboratively. We will be
using UML 2.X specification.

2.1.2 Abstract System Architecture Overview

An abstract UML class diagram is provided as Figure 2.1

2.1.3 Entities

We have identified the following classes that will be used in our system:

Engine The game engine itself, in charge of communications between classes.
Player The player entity has 2 child classes - AI and Human. Both have same base method

and property names, with some di↵erent method bodies.
LandPlot Each instance of this class will represent a single tile on the map
GameMap This class is controlled directly from the engine. It stores all LandPlot instances.
Roboticon Roboticon is used in LandPlot for resource generation, trade between the player and

the market.
Market The trading center. Players can buy or sell di↵erent types of resources and roboticons.

It connects with the minigame class.
Minigame This class content a minigame for gambling, it is connected to the Market.
Auction The auction system, each instance will handle an individual auction that involves

specific or selected players.

2.1.4 Collaboration Diagrams

These are collaboration diagrams which show how the classes in our game will interact to complete
various tasks. They also allowed us to test our class diagram and ensure that all necessary relationships
had been established. They are provided as Figures 2.2 to 2.9.

2.2 Systematic Justification of Architecture

Designing an abstract representation of the system architecture required a lot of thought from the team,
as it is easy to overlook important relationships between classes and objects. We began the design process
by looking through the brief and our requirements document and creating a list of classes that we felt
encompassed the fundamental game elements. From this process, we came up with the entities shown in

7



SECTION 2. ARCHITECTURE Team Fractal

Figure 2.1: Abstract UML class diagram showing the relationships between classes in the software

Figure 2.2: Collaboration Diagram: Buying a plot of land

8



SECTION 2. ARCHITECTURE Team Fractal

Figure 2.3: Collaboration Diagram: Buying/Customising Roboticon from Market

Figure 2.4: Collaboration Diagram: Roboticon Installation

Figure 2.5: Collaboration Diagram: Production of Resources

Figure 2.6: Collaboration Diagram: Buying from Market

Figure 2.7: Collaboration Diagram: Selling to Market

Figure 2.8: Collaboration Diagram: Gambling

9



SECTION 2. ARCHITECTURE Team Fractal

Figure 2.9: Collaboration Diagram: Auction

the table above. Below is a description of how each class will work and justification for why it will work
that way.

2.2.1 Engine

The game engine is a particularly important class, as it is responsible for initiating and controlling each
phase of the game, as well as invoking random events which will a↵ect the games current state. In order for
the Engine to be able to do this, it must be able to communicate with the other fundamental classes, these
being the GameMap and each instance of the Player class. From the brief, we established that there is a
one-to-one relationship between the Engine and the GameMap, and a one-to-many relationship between
the Engine and the Player (we have set the number of instances of player to be two at the moment).
The Engine doesnt need to be connected to other classes such as the Market and the LandPlot as these
can be accessed via GameMap and Player. We chose not to give many classes a relationship with the
Engine, as this will create too many class couplings, meaning that if we need to make changes in the
Engine class, changes will need to be made in many other classes too.

2.2.2 Player

The player class models each player in the game, and the set of decisions that they can make while
playing. These decisions include: buying plots of land, installing roboticons on plots, buying and selling
from the market, and gambling in the bar (as detailed throughout the requirement section). Because of
the players large range of actions in the game, we needed the player to have relationships with quite a
few of the other classes, including the Market, the Auction, various instances of the LandPlot class, and
the Minigame. Although this may seem risky due to the slightly monolithic nature of the class, we feel
that the only way we can deliver a piece of software which satisfies all of the requirements is to design
the system in this way. The Player class will be the parent of two other classes called Human and AI.
These classes will inherit the attributes and methods of player, but will overwrite methods to suit each
player role. The player will have attributes detailing the name of the player, as well as the amount of
money they have, the number of each resource they own (food, energy, ore), and the plots they own.

2.2.3 Roboticon

The roboticon class is responsible for production of resources on a plot, as stated in requirement 7.1.1.,
and any modifiers that will be applied to the rate of production. It is therefore necessary for a roboticon
to be able to communicate with the land plot on which it is placed. In accordance with requirements 6.1.4.
and 6.1.5. the player will be able to customise the roboticon by installing upgrades for money. Finally
the roboticon is produced, stored, and sold by the market so the classes must be able to communicate,
as described in requirements 6.1.1 and 6.1.2.. It will have attributes to determine how it will alter the
production of resources on a plot.

10



SECTION 2. ARCHITECTURE Team Fractal

2.2.4 Market

The Market is the class responsible for managing the price of resources in the game (based on supply and
demand), and also producing roboticons, as specified in requirement 8.1.2.. The player can directly buy
and sell resources to/from the market so must be able to interact with it. The market will also engage in
the auction, placing bids against the other player and a↵ecting the price at which resources are bought
and sold. It will therefore interact with the auction. The market also has a relationship with roboticons
as it can buy sell and produce them.

2.2.5 Minigame

The minigame is a fairly simple class as it only interacts with the player. The minigame is a game found
in the market which will allow the player to gamble and either gain or loses money which will satisfy
requirement 9.1.1.

2.2.6 Auction

The Auction Class is responsible for players buying and selling resources to each other, as described
in requirement 8.1.1. The market will also act as a bidder in the auction giving bids based on the
supply/demand of the resource allowing access to the auction in a 2 player Game. The auction will take
resources to be sold from one player and bids from the other player(s) and the market, then provide the
resources to the highest bidder.

2.2.7 LandPlot

The LandPlot class is used for purchase, resource production and customisation as Player request as
described in requirement 2, 7.1.3 and 3.1.1. All LandPlots instances are stored inside the GameMap
class for rendering, and those LandPlots shall have the same size as described in requirement 1.2.2. On
the occurrence of random event, the production rate for di↵erent resources should change respectively if
criteria matches per requirement 2.2.2.

2.2.8 GameMap

The GameMap Class is in charge of storing all instances of LandPlot and the interaction with the Engine
to render the Game Map to the screen. At beginning of the game, GameMap will initialise and set all
LandPlots to a state of unoccupied to allow the Player to view and purchase as described on requirement
1.1.1 and 2.2.3.

11


